Mitochondrial nt3010G-nt3970C haplotype is implicated in high-altitude adaptation of Tibetans.

نویسندگان

  • Yongjun Luo
  • Wenxiang Gao
  • Fuyu Liu
  • Yuqi Gao
چکیده

Tibetans are well adapted to living and thriving in high-altitude environments. Mitochondria are central links to oxygen consumption, and variations in mitochondrial DNA (mtDNA) could play a role in high-altitude adaptation. Alleles at several polymorphic sites in mtDNA define common haplotypes, or haplogroups, including some that have been implicated in the risk of developing certain diseases. However, few reports have determined whether relationships exist between haplogroups and high-altitude adaptation in the Tibetan population. The D4 haplogroup is a major haplogroup of the Han Chinese. In the present study, genotypes of 12 polymorphisms were determined in members of a Tibetan population (n = 72), low altitude-Han (la-Han, n = 144), and high altitude-Han (ha-Han, n = 227) populations using polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction-ligase detection reaction assays. The mitochondrial haplogroup D4 was negatively associated with high-altitude adaptation in Tibetans (P = 0.001 vs. la-Han, OR = 0.166, 95% CI = 0.048-0.567; P = 0.009 vs. ha-Han OR = 0.232, 95% CI = 0.069-0.778). The frequency of the nt3010G-nt3970C haplotype was significantly higher in Tibetans than in la-Han (P = 0.000) and ha-Han (P = 0.001) subjects. Findings in the present study suggest that unique mitochondrial variations determine a genetic background that is associated with high-altitude adaptation in the Tibetan population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric oxide production

The genetic adaptation of Tibetans to high altitude hypoxia likely involves a group of genes in the hypoxic pathway, as suggested by earlier studies. To test the adaptive role of the previously reported candidate gene EP300 (histone acetyltransferase p300), we conducted resequencing of a 108.9 kb gene region of EP300 in 80 unrelated Tibetans. The allele-frequency and haplotype-based neutrality ...

متن کامل

A genome-wide search for signals of high-altitude adaptation in Tibetans.

Genetic studies of Tibetans, an ethnic group with a long-lasting presence on the Tibetan Plateau which is known as the highest plateau in the world, may offer a unique opportunity to understand the biological adaptations of human beings to high-altitude environments. We conducted a genome-wide study of 1,000,000 genetic variants in 46 Tibetans (TBN) and 92 Han Chinese (HAN) for identifying the ...

متن کامل

New aspects of altitude adaptation in Tibetans: a proteomic approach.

A prolonged sojourn above 5500 m induces muscle deterioration and accumulation of lipofuscin in Caucasians, probably because of overproduction of reactive oxygen species (ROS). Because Sherpas, who live at high altitude, have very limited muscle damage, it was hypothesized that Himalayan natives possess intrinsic mechanisms protecting them from oxidative damage. This possibility was investigate...

متن کامل

Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations.

Research into the mechanisms of human adaptation to the hypoxic environment of high altitude is of great interest to the fields of human physiology and clinical medicine. Recently, the gene EGLN1, from the hypoxia-inducible factor (HIF) pathway, was identified as being involved in the hypoxic adaptation of highland Andeans and Tibetans. Both highland Andeans and Tibetans have adapted to an extr...

متن کامل

Evolutionary history of Tibetans inferred from whole-genome sequencing

The indigenous people of the Tibetan Plateau have been the subject of much recent interest because of their unique genetic adaptations to high altitude. Recent studies have demonstrated that the Tibetan EPAS1 haplotype is involved in high altitude-adaptation and originated in an archaic Denisovan-related population. We sequenced the whole-genomes of 27 Tibetans and conducted analyses to infer a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mitochondrial DNA

دوره 22 5-6  شماره 

صفحات  -

تاریخ انتشار 2011